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Abstract

This proposal presents an advanced solution for predicting
pet image appeal scores by regressing visual and metadata
features. State-of-the-art computer vision models like Swin
Transformers are adapted and !ne-tuned for the regression
task. Nonlinear feature engineering transforms metadata into
predictive representations. Advanced ensembling integrates
diverse solutions using validation-based weighting for opti-
mal accuracy. Comprehensive evaluations on public leader-
boards demonstrate the effectiveness of the techniques. The
methods provide a strong proof-of-concept for integrating
multi-modal data like images, metadata, and external sources
to accurately predict pet adoption appeal for practical appli-
cations.

Introduction

Millions of stray cats and dogs suffer on streets or are euth-
anized in shelters daily around the world. Adopting more of
them into caring homes could signi!cantly reduce their suf-
fering. The Pawpularity contest on Kaggle presents an op-
portunity to develop algorithms that score pet pro!le photos
by predicted click-through rate, which highly correlates with
adoption rate. More accurate models to assess pet photo ap-
peal could thus enable shelters and rescuers to create more
attractive pro!les that directly increase adoption rates.
The current state-of-the-art methods for this task encom-

pass two distinct components, each substantially contribut-
ing to the exceptional accuracy of the models. Firstly, by
employing transfer learning, pre-trained deep learning mod-
els, especially those specialized in image classi!cation, ex-
tract features from pet images. These features are then trans-
formed into a tabular format, effectively converting the task
into a regression challenge. The application of Support Vec-
tor Regression (SVR) to these tabular features produces
competitive Root Mean Squared Error (RMSE) scores. Sec-
ondly, the process involves an ensemble of classical image
regression models with diverse backbones and augmenta-
tion techniques. These models undergo training using var-
ious image sizes and augmentations, and their predictions
are combined via a weighted average, signi!cantly enhanc-
ing the accuracy of the solution. This cutting-edge approach
integrates computer vision and metadata modeling, veri!ed
through comprehensive evaluations on public leaderboards.

The leading solution relies on an ensemble that combines
transfer learning, support vector regression, and vision trans-
former models, achieving a remarkable state-of-the-art per-
formance with the following !nal SOTA metrics: CV: 16.81,
Public LB: 17.72, Private LB: 16.82.
The top solutions for predicting pet photo appeal integrate

transfer learning, tabular regression, and ensembling of deep
image models. By extracting features from pretrained mod-
els like CLIP and Ef!cientNet then !tting Support Vector
Regression, competitive RMSE scores are achieved. Adding
diverse sets of features via stacking further boosts perfor-
mance. Meanwhile, SOTA vision models like Swin Trans-
formers and BeIT are trained on image sizes from 224 to
528 using aggressive augmentations. Ensembling 5+ mod-
els via weighting averages yields substantial gains. The win-
ning approach combines an SVR model trained on stacked
CLIP and Ef!cientNet features, plus an ensemble of Swin,
BeIT, and Ef!cientNet models trained with heavy augmen-
tations. This integrates the bene!ts of transfer learning for
tabular data and robust image regressors. In summary, mar-
rying metadata modeling using transfer learning with robust
vision model ensembles pushes pet photo appeal prediction
to new levels of accuracy.
In order to better adopt stray animals, scoring the pawpu-

larity (cuteness) of stray animals is very important, but eval-
uating the pawpularity of animals is a very labor-intensive
thing. Consequently, there has been an urgent surge of inter-
est to develop an algorithm that scores pawpularity of ani-
mals. However, the dataset in Kaggle not only has images,
but also metadata describing images. Most methods basi-
cally focus on the most advanced image regression methods
in recent years, but there is no good method to deal with the
metadata of images.
In response to the aforementioned challenges, we have

developed the Pawpularity Predicting system. Our system
is characterized by three distinct features: Application of
Ensemble Learning Methods and Phased Training and
Metadata Integration :

• Application of Ensemble Learning Methods: A pri-
mary innovation of this system is the implementation of
ensemble learning techniques to integrate outputs from
diverse models. Each model is specialized in speci!c as-
pects of image analysis, such as identi!cation of ani-



mal species, posture analysis, or reduction of background
noise. This approach enables the system to fully leverage
the strengths of each model, enhancing the overall accu-
racy and reliability of the scoring.

• Phased Training and Metadata Integration : Another
innovative aspect is the tri-phasic design of model train-
ing. In each phase, different proportions and types of
metadata are introduced, aligned with the training objec-
tives of that phase. For instance, the initial phase may
focus on recognizing basic image features, while sub-
sequent phases concentrate on more complex contextual
information and subtle image variances. This gradual in-
corporation of metadata not only heightens the model’s
sensitivity to diverse data characteristics but also boosts
the system’s robustness against novel or anomalous im-
ages. Such a strategy allows the model to gradually adapt
to increasingly complex and variable data throughout the
training process, thereby enhancing the generalization
capability and stability of the scoring system.

Our system was tested on the INVDIA GPU P100 device,
yielding the following results: 16.83358(RMSE).

Background

A deep learning approach is increasingly favored for pro-
cessing intricate data, particularly for assessing the appeal of
pet photos. Deep learning, a non-linear method for unsuper-
vised or supervised learning, leverages convolutional neu-
ral networks (CNNs) and multi-layer perceptrons (MLPs)
within its framework. CNNs adeptly transform input data
(pet images in this context) into multi-level representa-
tions, extracting critical spatial information through convo-
lution, pooling, and activation functions. Pooling functions
reduce parameter count using operations like max, average,
weighted average, and L2 norm, effectively selecting rep-
resentative parameters. The output, a sparsity vector from
CNNs, feeds into a fully-connected MLP, which comprises
dense layers estimating probabilities for classifying pet im-
ages into various levels of appeal.
The !nal activation function, typically a softmax, clas-

si!es the image into its corresponding category and helps
prevent over!tting. Deep learning methods’ advantage lies
in their ability to process raw pet images without the need
for manual feature extraction. These methods have been ex-
tensively employed in various !elds, including aquaculture
for detection, classi!cation, behavior monitoring, and de-
fect identi!cation. Real-time object detection methods like
YOLO (You Only Look Once) and COCO (Common Ob-
jects in COntext) have shown promise in similar applica-
tions. For instance, the DeepFish method analyzed remote
underwater !sh habitats using the YOLO framework, which
formulates object detection as a regression problem and re-
lies on CNNs for processing.
The YOLO algorithm’s ef!cacy is attributed to its use

of residual blocks, bounding box regression, and Intersec-
tion Over Union (IOU), often outperforming other object-
detection techniques. The adaptability of deep learning,
combined with traditional methods, offers a diverse range of
applications, making it an ideal choice for developing sys-

tems to score pet photos by their appeal, which could signif-
icantly impact pet adoption rates.

Related Work

CNN and Transformer Models

In recent years, signi!cant advancements in computer vi-
sion tasks have been achieved, thanks to the success of
Transformers, large-kernel convolutional neural networks
(CNNs), and multi-layer perceptrons. These models excel in
globally integrating information, leading to improved per-
formance across various computer vision domains. How-
ever, their ef!cient deployment, especially on resource-
limited mobile devices, remains a formidable challenge
due to the high computational costs associated with self-
attention mechanisms, large convolutional kernels, and fully
connected layers.
A key aspect of this challenge is the ef!cient mixing of to-

kens in Transformer models. Traditional methods, while ef-
fective, often come with increased computational demands.
Notable examples include Reformer and Swin Transformer,
which have explored strategies to improve the ef!ciency of
token mixing. However, these improvements often compro-
mise the network’s representational capacity.
Originally proposed by Vaswani et al. for natural language

processing (NLP) and ViT for computer vision, transform-
ers have since led to numerous models achieving satisfac-
tory results in classi!cation, object detection, segmentation,
and multi-modal learning. For low-level vision tasks, Trans-
formers combined with multi-task learning and Swin Trans-
former blocks have surpassed CNN-based methods. Other
advanced networks have also achieved competitive results in
various inverse problems. Considering the substantial com-
putational overhead of spatial self-attention, Wu et al. pro-
posed a lightweight LT structure for mobile NLP tasks.
By employing long-short-range attention and a !attened
feed-forward network, they signi!cantly reduced the num-
ber of parameters while maintaining model performance.
Restormer improves the transformer block with a gated-
Dconv network and multi-Dconv head attention transposed
modules, facilitating multi-scale local-global representation
learning on high-resolution images. We have incorporated
LT and Restormer blocks into our CDDFuse model.

Ensemble Learning Methods in Deep Learning

On a parallel track, the integration of ensemble learning
methods into deep learning has garnered considerable atten-
tion in recent times(Ganaie et al. 2022). Ensemble learn-
ing is a machine learning paradigm that combines multi-
ple individual models to construct a more robust overall
model. The core idea behind this approach is that by aggre-
gating the predictions of multiple models, one can reduce
the bias and variance associated with single models, thereby
improving overall prediction accuracy(Ganaie et al. 2022).
Among various ensemble learning techniques, the Gradient
Boosting Decision Tree (GBDT) is a particularly popular
method. GBDT is a powerful ensemble learning method.
It works by successively adding decision trees, where each
new tree is speci!cally designed to address the errors or



”residuals” left by the previous one. This process of itera-
tive improvement helps to minimize the overall loss func-
tion, steadily enhancing the model’s ability to make accu-
rate predictions. Essentially, GBDT combines the strengths
of multiple trees in a step-by-step manner to form a more ef-
fective predictive model(Friedman 2001). LightGBM is an
optimized version of GBDT, developed by Microsoft, and is
especially suited for large-scale data processing. It signi!-
cantly improves training speed and ef!ciency by using tech-
niques such as gradient-based one-side sampling (GOSS)
and exclusive feature bundling (EFB), while also reduc-
ing memory usage(Ke et al. 2017). Compared to traditional
GBDT, LightGBM shows higher computational ef!ciency
and lower resource consumption when dealing with large
volumes of data, making it an ideal choice in the era of big
data (Prokhorenkova et al. 2018). Additionally, LightGBM
supports various tasks, including classi!cation, regression,
and ranking, and offers good scalability and !exibility (Ko-
pitar et al. 2020).

Model Ef!ciency and Attention Mechanisms

The compressed representations in the frequency domain
contain rich patterns for image understanding tasks. Previ-
ous studies [14, 15, 16] have trained specialized networks
based on autoencoders to simultaneously handle compres-
sion and inference tasks. Literature [17] extracts features
from the frequency domain to classify images, while liter-
ature [18] proposes a model conversion algorithm to trans-
form spatial-domain CNN models into the frequency do-
main.

The advent of Vision Transformers (ViTs) and subsequent
research have shown signi!cant improvements over tradi-
tional CNNs in computer vision tasks (Dosovitskiy et al.
2020). These improvements can be attributed to the ability of
ViTs to adapt dynamically and extract knowledge from large
datasets (Chen et al. 2022a; Everingham et al. 2015; Gra-
ham et al. 2021). However, attention-based models, which
are the cornerstone of ViTs, are resource-intensive, particu-
larly when dealing with feature maps of large channel and
resolution dimensions (Guibas et al. 2021).

To address these computational challenges, researchers
have devised innovative solutions. These include the de-
velopment of variants with linear computational complex-
ity (Maaz et al. 2022), reduction of spatial feature reso-
lution, reordering of channel structures (Liu et al. 2022),
and the utilization of local window attention mechanisms,
among other strategies. While these methods show promise,
they still face limitations when it comes to deployment on
resource-constrained devices.

Hybrid Models

In response to the challenges mentioned, a recent shift in
research focus has been observed(Rabiner and Gold 1975).
Researchers are now dedicated to crafting hybrid models
that ef!ciently combine lightweight CNNs. These hybrid
models have achieved superior performance when com-
pared to traditional CNN-based models while simultane-
ously offering trade-offs in terms of accuracy, parameter

count(Zhang et al. 2022; Zhou et al. 2019), and !oating-
point operations (FLOPs). However, several of these ap-
proaches introduce complex architectural elements or mul-
tiple hybrid modules, potentially complicating the optimiza-
tion process for practical applications(Wu, Lischinski, and
Shechtman 2021; Vaswani et al. 2017).
Remarkably, little exploration has been done so far in

creating attention-based counterparts akin to Independent
Residual Blocks (IRBs). The absence of such counterparts
raises a compelling question: Can we develop a streamlined
IRB-like infrastructure for attention-based models, exclu-
sively using fundamental operators? This question serves as
a catalyst for further research and development in the pur-
suit of ef!cient and effective attention mechanisms in deep
learning.

Method

In this section, we !rst introduce the work!ow of Pawpu-
larity Predicting System and the detailed structure of each
module. For simplicity, we denote low-frequency long-range
features as the base features and high-frequency local fea-
tures as the detail features in the following discussion.

Overview

Our solution uses a phased training and reasoning approach.
We start by training three separate submodels. These three
submodels can do the job on their own. Then we construct
a decision tree model, Light BGM. Its input consists of the
prediction results of the three sub-models in stage 1, and
the one-hot coding of the metadata. Finally, the Light GBM
model outputs the !nal prediction result.

Submodule

This model architecture is primarily based on the Swin
Transformer, a neural network model speci!cally optimized
for image processing tasks. The Swin Transformer is a vari-
ant of the Transformer architecture, particularly suited for
handling image data. It employs a concept known as ”win-
dows,” restricting the scope of self-attention mechanisms
to reduce computational complexity. This approach enables
the model to process large-scale images while maintaining
high ef!ciency. In the code, the model is instantiated using
the create model function from the timm library. The
model type is swin large patch4 window7 224, in-
dicating a large variant of the Swin Transformer con!gured
with 7x7 patch window sizes and an input image size of
224x224 pixels. The model is preset in a pre-trained state,
meaning it has already undergone initial training on a large-
scale dataset to accelerate subsequent learning processes and
enhance generalization capabilities.
To enhance the model’s robustness and accuracy, the

code employs Strati!ed K-Fold Cross-Validation. This
method ensures that each fold represents the overall
dataset effectively. The model’s loss function is set to
BCEWithLogitsLossFlat(), a common loss function
for binary classi!cation tasks, suitable for evaluating per-
formance in regression tasks. To assess model performance,
custom metrics such as petfinder rmse are de!ned,



speci!cally designed to evaluate the accuracy of the model’s
Pawpularity score predictions.

The FastAI library’s Learner class is used in this
model to encapsulate data, models, and optimizers, sim-
plifying the training process. Detailed monitoring and ad-
justments are made during the model training through call-
backs such as model saving (SaveModelCallback),
early stopping (EarlyStoppingCallback), and log-
ging (CSVLogger).

Overall, this model architecture focuses on leveraging the
ef!cient image processing capabilities of the Swin Trans-
former and optimizes performance in Pawpularity prediction
tasks through meticulous cross-validation and performance
monitoring.

Inference

2nd Training

This study’s two-stage training process encompasses data
retrieval, fusion of model prediction outcomes, and appli-
cation and computation of regression coef!cients. Initially,
predictive training datasets of pet popularity (Pawpularity)
are imported from the results of the !rst training round. Sub-
sequently, the code extracts output predictions from various
CSV !les across multiple models, integrating these !ndings
into a data frame. These predictions undergo standardiza-
tion, speci!cally division by 100, to adjust format and range.

Building upon this foundation, the process establishes a
correlation between each image path and its correspond-
ing predictive score. Further, least squares regression is em-
ployed to compute regression coef!cients, aiming to min-
imize the discrepancy between predicted results and actual
Pawpularity scores through optimal coef!cient combination.
This step facilitates the fusion of predictions from multiple
models, thereby enhancing the overall accuracy of predic-
tions. The computed coef!cients are subsequently displayed
and visualized through bar charts to elucidate the relative
signi!cance of different predictions in the fusion process.
Ultimately, these coef!cients are utilized in conjunction with
prediction outcomes through dot product operations to gen-
erate an integrated predictive result, enhancing the accuracy
of Pawpularity predictions.

Moreover, the model includes phases of data prepara-
tion, feature selection, and evaluation metric de!nition,
focusing on constructing a machine learning model for
predicting pet popularity. Utilizing Strati!edKFold, data
is divided into !ve distinct folds for cross-validation, ensur-
ing each fold approximates the overall dataset distribution in
terms of Pawpularity, thus bolstering the model’s generaliza-
tion capabilities. During the feature selection phase, a series
of key features, including fundamental attributes like “Blur”
and “Eyes” as well as derived features, are !ltered from the
dataset, excluding less critical features to optimize perfor-
mance. To assess model ef!cacy, an rmse function is de-
!ned to calculate the root mean square error between model
predictions and actual values, a crucial metric for evaluating
regression model performance. Overall, this methodology,
through selective feature utilization and stringent evaluation,
ensures the effectiveness and reliability of the model in pre-

dictive tasks.
Figures2 shows the comparison of prediction perfor-

mance among various models proposed in this paper. It can
be seen that the model using Ensemble learning achieved the
best result of 16.83, demonstrating the advantage of Ensem-
ble learning in improving prediction accuracy. The perfor-
mance of the ConvNextLarge patch4 and Swin Large patch4
window7 224 Transformer models were also relatively ex-
cellent, with results of 17.69 and 17.85 respectively. The Vit
Base model performed poorer with a result of 18.09. By in-
corporating pre-trained models, it can be observed that the
Ensemble learning method integrated the strengths of multi-
ple models, improving the overall effect.

Inference

The architecture for the inference phase models incorpo-
rates Swin Transformer and Ef!cientNetV2, tailored for im-
age classi!cation tasks. Each model is encapsulated within a
PyTorch Lightning module, facilitating training and valida-
tion processes. The training regime employs mixup, a data
augmentation technique enhancing model generalization. A
function is established to aggregate model predictions, lever-
aging ensemble learning to integrate outputs from multiple
models, culminating in the generation of a submission !le.

Experiment
Here we elaborate the implementation and con!guration de-
tails of our networks. Experiments are conducted to show
the performance of our models and the rationality of net-
work structures.

Setup

• Environment Details:In this study, we developed
an animal image scoring system utilizing ensem-
ble learning methods. The con!guration details are
comprehensively de!ned within the config dictio-
nary, crucial for establishing the training environ-
ment and model speci!cations. Initially, in terms
of environment setup, a !xed seed value is set
to ensure reproducibility. The dataset, sourced from
‘\kaggle\input\petfinder-pawpularity-s
core’, is divided into !ve segments for cross-validation
to evaluate model generalization. Regarding the training
con!guration, the process spans over 20 epochs, leverag-
ing a single GPU for computational acceleration. Gra-
dient updates are conducted post each batch, comple-
mented by a progress bar for real-time training feed-
back. This setup ensures comprehensive training and
skips completeness checks on validation data. Each train-
ing session commences from scratch, without resuming
from any checkpoint. To quantitatively gauge the fusion
results, we deploy eight distinct metrics: entropy (EN),
standard deviation (SD), spatial frequency (SF), mutual
information (MI), sum of the correlations of differences
(SCD), visual information !delity (VIF), QAB/F, and
structural similarity index measure (SSIM). Higher val-
ues in these metrics suggest enhanced quality of the fu-
sion image. For further details on these metrics, refer to
[40].
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Figure 2: RMSE Comparison between Ensemble Learning Model andSOTA Solution Model

and staged data incorporation in advancing the robustness
and accuracy of computer vision systems.
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Team Data Score Solution
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